
MusicXML: An Internet-Friendly Format for Sheet
Music

Michael Good

Abstract

The downloadable sheet music market has been constrained by reliance on pro-
prietary binary formats. MusicXML is a new Internet-friendly format for repres-
enting sheet music and music notation. We introduce the basics of MusicXML
design, using examples from current software to illustrate MusicXML's advant-
ages over previous music interchange formats. We conclude by discussing the
new types of music use that MusicXML makes possible, and how this fits in
with ongoing XML development efforts.

1. The Need for a New Music Interchange Format

Common Western music notation is a symbolic method of representing music for performers
and listeners. Besides its use in publishing sheet music, musical scores and parts, it has been
encoded in different computer formats for over 30 years. The book Beyond MIDI describes over
20 of these published musical codes. There are also many more unpublished, proprietary codes.
Given the high costs of traditional music publication, many companies have seen that Internet
distribution has the potential to increase both the size and profitability of the sheet music market.

To date, the Internet sheet music market has been hobbled by its reliance on a proliferation of
proprietary binary formats. The most common format, Portable Document Format (PDF) ,
contains no musical semantics and can only be viewed on screen or printed on paper. Companies
like Sunhawk, MusicNotes, Sibelius, and Noteheads all have different proprietary music formats
for their sheet music players. If you buy sheet music from them or their partners today, you can
play it, view it, or print it only with that single proprietary player. This provides little value-
added to consumers when compared to printed music on paper. We believe this has fragmented
the online sheet music market and contributed significantly to its disappointing sales through
2001.

Electronic musical instruments such as synthesizers faced a similar problem in the 1980s, when
there was no way to get musical instruments from different vendors to work or play together.
The invention of the Musical Instrument Digital Interface (MIDI) format [MIDI 1996]solved
this problem, and led to the rapid growth of the electronic musical instrument market. The
introduction of General MIDI led to even further levels of compatibility, interchange, and growth
in the instrument market.

Today, MIDI remains the only symbolic music interchange format in wide use today. But MIDI,
designed to solve problems in music performance, cannot represent much of what is found in
sheet music. MP3 and other audio formats represent music recordings, not music notation.

1

Rendered by www.RenderX.com

http://www.renderx.com

Except for very simple music, computers cannot automatically derive accurate music notation
from a music recording, despite decades of research.

Music interchange formats have been developed in the past, but none besides MIDI has been
successful. Notation Interchange File Format (NIFF) is based on the binary Resource Interchange
File Format (RIFF) format. It has been used to interchange music between scanning and notation
applications. NIFF contains more notation data than MIDI, but its highly graphical representation
is inferior to MIDI for performance and analysis applications. Its adoption outside of scanning
software has been very limited. Standard Music Description Language (SMDL) , based on
Standard Generalized Markup Language (SGML), was an attempt to create a general-purpose,
formal specification for music, and was designed without the guidance of implementation
experience. The result was a complex, difficult-to-understand specification that, to our knowledge,
has not been implemented in any commercial product.

2. MusicXML's Approach to Music Interchange

MusicXML attempts to do for online sheet music and music software what MIDI did for elec-
tronic musical instruments. MusicXML represents common Western music notation from the
17th century onwards. By using XML, it is more Internet-friendly that proprietary binary formats.
MusicXML serves as an interchange format for applications in music notation, music analysis,
music information retrieval, and musical performance. Therefore it augments, but does not
replace, existing specialized formats for individual applications. It is designed to be adequate,
not optimal, for these diverse applications.

XML has obvious appeal as a technology to help solve the music interchange problem. It is
designed to represent complex, structured data in a standardized way. The same things that
make XML appeal in other application areas - including straightforward usability over the
Internet, ease of creating documents, and human readability - apply to musical scores as well.
Castan et al. [Castan 2001]discuss several approaches to using XML to represent music, and
many more have been introduced on the Web. These alternative XML formats tend to be much
simpler than MusicXML, do not represent as many aspects of music notation, and lack software
that works with commercial music applications.

To circumvent the problems of past interchange formats, the design of MusicXML followed
two main strategies:

1. The design of MusicXML was based on two of the most powerful academic music formats
for music notation: MuseData and Humdrum. Both formats have large music repertoires
available, and have been used for diverse music applications. A format that learns from
these successes would have a solid technical grounding.

2. The MusicXML definition was developed iteratively with MusicXML software. The initial
prototype software did two-way conversions to MuseData, read from NIFF files, and wrote
to Standard MIDI Files (Format 1). Handling these three very different formats demonstrated
that MusicXML's basic interchange capabilities were solid. We then moved on to support

2

Rendered by www.RenderX.com

http://www.renderx.com

interchange with Finale from Coda Music Technology, the market leader in music notation
software.

Iterative design and evolutionary delivery techniques have been used since the 1980s to produce
more usable and useful computer systems[Gilb 1988] [Good 1988].[Gould 1985]. With
MusicXML, we have found that these techniques can also be successful in XML language
design.

As of October 2001, MusicXML has just begun its public beta test. Recordare provides a
MusicXML Finale converter to convert between Finale, MusicXML, and MuseData. The con-
verter runs on Windows with Finale 2000, 2001, and 2002. Visiv has added MusicXML support
to their SharpEye Music Reader product, one of the leading music scanner software packages
on Windows. SharpEye saves MusicXML files starting with version 2.15. Xemus Software and
Middle C Software have announced their plans for MusicXML support in upcoming products.
M u s i c X M L i s a v a i l a b l e u n d e r a r o y a l t y - f r e e l i c e n s e
(http://www.recordare.com/dtds/license.html). The complete MusicXML DTD is available at
http://www.musicxml.org/xml.html.

With this solid level of acceptance as a result of the MusicXML alpha test, we will be reaching
out to more music software developers during the beta test to increase the level of MusicXML
usage in the industry. Only after we have greater implementation experience, especially with
popular music, do we plan to standardize MusicXML, most likely through Organization for the
Advancement of Structured Information Standards (OASIS).

3. Elements of MusicXML Design

To introduce how MusicXML represents musical scores, here is the musical equivalent of C's
"hello, world" program for MusicXML. Here we will create about the simplest music file we
can make: one instrument, one measure, and one note, a whole note on middle C:

Figure 1. Hello, World in MusicXML

Here is the musical score represented in MusicXML:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE score-partwise PUBLIC
 "-//Recordare//DTD MusicXML 0.5 Partwise//EN"
 "http://www.musicxml.org/dtds/partwise.dtd">
<score-partwise>
 <part-list>
 <score-part id="P1">
 <part-name>Music</part-name>
 </score-part>
 </part-list>
 <part id="P1">

3

Rendered by www.RenderX.com

http://www.recordare.com/dtds/license.html
http://www.musicxml.org/xml.html
http://www.renderx.com

 <measure number="1">
 <attributes>
 <divisions>1</divisions>
 <key>
 <fifths>0</fifths>
 </key>
 <time>
 <beats>4</beats>
 <beat-type>4</beat-type>
 </time>
 <clef>
 <sign>G</sign>
 <line>2</line>
 </clef>
 </attributes>
 <note>
 <pitch>
 <step>C</step>
 <octave>4</octave>
 </pitch>
 <duration>4</duration>
 <type>whole</type>
 </note>
 </measure>
 </part>
</score-partwise>

MusicXML can represent scores either partwise (measures within parts) or timewise (parts
within measures), with XSLT stylesheets to go back and forth between the two. One of the key
insights from the Humdrum format is that musical scores are inherently two-dimensional. Since
XML is hierarchical, using XSLT to alternate between the two hierarchies gives us a useful
way to simulate the lattice-like structure of a musical score. In our example, we are using a
partwise score. The part list is very simple, containing one instrument. The score-part element's
id attribute is an ID that is referred to by the part element's id attribute, which is an IDREF.

The attributes element contains musical attributes of a score, such as the key signature, time
signature, and clef. Normal key signatures are represented by the number of sharps or flats; the
fifths element refers to the position of the key on the circle of fifths. The key of C with no sharps
or flats has a value of 0; the key of F with one flat would have a value of -1. The time signature
includes the numerator (beats) and denominator (beat-type). The representation of treble clef
shows that the second line from the bottom of the staff represents a G.

The first child element of the attributes element, <divisions>, is borrowed from MIDI and
MuseData. Musical durations are commonly referred to as fractions: half notes, quarter notes,
eighth notes, and the like. While each musical note could have a fraction associated with it,
MusicXML instead follows MIDI and MuseData by specifying the number of divisions per
quarter note at the start of a musical part, and then specifying note durations in terms of these
divisions.

After the attributes, we then have our one and only note in the score: a C in octave 4, the octave
that starts with middle C. Since we have one division per quarter note, the duration of 4 indicates
a length of 4 quarter notes, or one whole note. The actual printed note type is also included as
well as the duration. Notation programs can more easily deal with the written type, while MIDI

4

Rendered by www.RenderX.com

http://www.renderx.com

programs deal more easily with the duration. In some cases, sounding duration is different than
written duration (as in jazz), so having both can be necessary for accuracy, not just program
convenience.

Contrast the musical representation of pitch and duration, well-suited for both notation and
performance applications, to the graphical representation in NIFF. NIFF is a binary format, but
if we do a one-to-one translation of its binary elements to XML syntax, the whole note would
be represented like this:

<Notehead Code="note" Shape="2" StaffStep="-2">
 <Duration Numerator="1" Denominator="1"/>
</Notehead>

The StaffStep attribute tells us that the note is two staff steps, or one line, below the staff. What's
its pitch? For that we need to check the clef and key signature, then handle any accidentals that
preceded the note in this measure, then look for any accidentals in a note that may be tied to
this one. All this computation is needed for one of the two most basic elements of music notation:
what pitch is sounding? Fortunately, the other basic element, the timing of the note, is represented
much more directly. But the very indirect nature of pitch representation makes NIFF sub-
optimal for most performance and analysis applications.

To illustrate how MusicXML gives better results than MIDI for music interchange, let us look
at a typical difference in real-life interchange. We scanned in the fourth song of Robert Schu-
mann's Liederkreis, Op. 24, on poems by Heinrich Heine, using SharpEye Music Reader version
2.16. We corrected the scanning mistakes within SharpEye: music scanning is not yet as
accurate as optical character recognition, especially when scanning older public domain music.
We then saved the files from SharpEye to MIDI and MusicXML. We imported the MIDI files
into Finale 2002 and Sibelius 1.4 using the default MIDI import settings, and imported the
MusicXML file into Finale 2002 using the Recordare MusicXML Finale Converter Beta 1.

This song is not very complicated, so all of its musical features can be captured within SharpEye
and saved to MusicXML. Figure 2 shows the last four measures of the song as scanned into
SharpEye:

Figure 2. Excerpt from Schumann's Op. 24, No. 4 as scanned into SharpEye

Figure 3 shows what the last four measures of the song look like when imported into Finale
using MusicXML:

5

Rendered by www.RenderX.com

http://www.renderx.com

Figure 3. Importing SharpEye into Finale via MusicXML

Figure 4 shows the last four measures when imported into Finale using MIDI:

Figure 4. Importing SharpEye into Finale via MIDI

The song lyrics are in the MIDI file, though Finale's reader did not import them. Figure 5 shows
the last four measures when imported into Sibelius using MIDI. Sibelius reads the lyrics, but
uses treble instead of bass clef for the left hand of the piano part.

Figure 5. Importing SharpEye into Sibelius via MIDI

As you can see, the MIDI imports are much less accurate than the MusicXML import, even
with a simple music example. Why is this the case? Let's compare what is represented in the
MIDI file vs. the MusicXML file, using an XML version of the binary MIDI format. Let us

6

Rendered by www.RenderX.com

http://www.renderx.com

look at the second measure of the left hand of the piano part. In the MusicXML file, we set the
divisions to 6 to handle some triplets earlier in the song, so our four eighth notes look like:

 <note>
 <pitch>
 <step>B</step>
 <octave>2</octave>
 </pitch>
 <duration>3</duration>
 <voice>3</voice>
 <type>eighth</type>
 <stem>up</stem>
 <staff>2</staff>
 <notations>
 <articulations>
 <staccato/>
 </articulations>
 </notations>
 </note>
 <note>
 <rest/>
 <duration>3</duration>
 <voice>3</voice>
 <type>eighth</type>
 <staff>2</staff>
 </note>
 <note>
 <pitch>
 <step>B</step>
 <octave>2</octave>
 </pitch>
 <duration>3</duration>
 <voice>3</voice>
 <type>eighth</type>
 <stem>up</stem>
 <staff>2</staff>
 <notations>
 <articulations>
 <staccato/>
 </articulations>
 </notations>
 </note>
 <note>
 <rest/>
 <duration>3</duration>
 <voice>3</voice>
 <type>eighth</type>
 <staff>2</staff>
 </note>

In the MIDI file, represented using MIDI XML, the measure looks like this:

 <NoteOn>
 <Delta>0</Delta>
 <Channel>2</Channel>
 <Note>47</Note>
 <Velocity>64</Velocity>
 </NoteOn>
 <NoteOff>

7

Rendered by www.RenderX.com

http://www.renderx.com

 <Delta>48</Delta>
 <Channel>2</Channel>
 <Note>47</Note>
 <Velocity>64</Velocity>
 </NoteOff>
 <NoteOn>
 <Delta>48</Delta>
 <Channel>2</Channel>
 <Note>47</Note>
 <Velocity>64</Velocity>
 </NoteOn>
 <NoteOff>
 <Delta>48</Delta>
 <Channel>2</Channel>
 <Note>47</Note>
 <Velocity>64</Velocity>
 </NoteOff>

Consider the differences between the two formats. MIDI has no discrete note element; rather,
notes are bounded by NoteOn and NoteOff events. Rests are not represented at all; they are
inferred from the absence of notes. This actually works very well for MIDI's intended use with
synthesizers and electronic musical instruments. It is not very well suited for music notation.
Given how much guessing the notation programs have to do to interpret a Standard MIDI File,
you can understand why the results fall short, and fall short in a different way for each MIDI
importing program.

MIDI also has no way to distinguish between a D-sharp and an E-flat; the one above middle C
has a Note value of 63 in either case. Here Sibelius guessed correctly, while Finale guessed
wrong. MIDI has no representation of beams or stem direction, and both programs got the
beaming wrong in the voice part. The beaming follows the slur - which is also not represented
in MIDI. Clefs are also missing from MIDI, so Sibelius guessed wrong on one part where Finale
guessed correctly.

MIDI is the only music interchange format in common use for music notation today. When you
can see all the ambiguities and missing data it produces, in this simple 4-bar example of a simple
song, you can see why sheet music desperately needs a comprehensive, Internet-friendly inter-
change format. MusicXML has a tremendous advantage compared to prior efforts like NIFF
and SMDL: XML had not been invented yet when the earlier teams did their work.

4. Freedom of Choice for Music Software Developers

One limitation to developing music software has been the tight coupling of music formats to
development tools. For instance, Finale plug-ins require C or C++ programming, the Humdrum
toolkit requires familiarity with Unix, and MuseData tools run on TenX, a non-standard DOS
environment. The tight coupling of programming environment to data representation has limited
the freedom and productivity of music software developers.

The promise of XML is that with the widespread availability of XML tools, MusicXML pro-
grammers can choose from a much wider range of development tools. We were delighted to

8

Rendered by www.RenderX.com

http://www.renderx.com

see the promise become a reality during the MusicXML alpha test, where programmers developed
MusicXML programs in many different environments, including:

• Visual Basic using the MSXML parser on Windows (Recordare)

• Java using the Xerces parser on Linux, Macintosh OS X, and Windows (Xemus and indi-
vidual developers)

• C using no parser on Windows (Visiv)

The ability to use rapid application development tools like Visual Basic to work with MusicXML
makes it possible to build analysis programs using much more common development skills than
the Unix expertise required for Humdrum. Good[Good 2001] illustrates this with some sample
visual analysis programs that were written in half a day with Visual Basic, ActiveX controls,
and MusicXML.

5. Future Directions

Now that MusicXML 0.5 can handle the basics of interchange between notation and performance
applications, there are two main efforts planned to meet the goals of growing the downloadable
sheet music market:

1. Test and refine MusicXML with retrieval and analysis applications.

2. Reach out to more music software developers and publishers to broaden MusicXML's
reach.

Music information retrieval is complex: the queries are often "fuzzy" (as in the ultimate goal
of query by humming or singing), and the data relationships are complicated. We have made
some initial attempts to use the June 2001 working draft of XQuery for extremely simple
queries of musical melodies, but the results have been discouraging. XQuery's current capabil-
ities for handling queries based on complex, ordered relationships between XML document
elements does not seem as strong as its capabilities for Structured Query Language (SQL)-like
queries. SQL techniques unfortunately do not get us very far in music information retrieval.

We believe that MusicXML provides the structure that is needed for music information
retrieval, but if XQuery will not handle this domain, specialized query tools may need to be
developed. This would be unfortunate for music information retrieval. Music software is a small
business compared to other software application areas. Much of XML's attraction for music
comes from its ability to leverage the investment in XML tools made by larger software markets.
If standard XML query tools cannot meet even the most basic needs of music information
retrieval, the music community is not likely to be able to take advantage of the optimizations
and features provided by new generations of XML database tools.

Music information retrieval likely has years of research ahead on algorithm development. We
believe that XML tools and music information retrieval tools can co-evolve together to meet
user needs. Music can serve as a useful application area to broaden the scope of standardized

9

Rendered by www.RenderX.com

http://www.renderx.com

XML query tools. Meanwhile, a standard XML format used in XML databases can let music
information retrieval researchers focus on the difficult questions of useful algorithms. The focus
needs to move to low-level database representation only when that directly affects these
algorithms.

If we really can get query-by-humming to work well for average customers, this could have
large commercial implications. But we do not expect to need these breakthroughs to meet the
goals of growing the downloadable sheet music market. For this, it should be sufficient to expand
the reach of MusicXML to more music software available on people's personal computers. If
all you can do with downloadable music is play it and print it with one program, why would
you buy it compared to paper? But if you can edit the music, use it as a smart accompaniment,
look at the musical score together with the playback of a CD, move the music to an electronic
music stand, and write new musical programs yourself, the value of the downloadable sheet
music increases dramatically. Once the music you download can be used on most any music
program on your PC, downloadable sheet music will start to have more value - or different but
complementary value - than paper music. Pervasiveness was a major part of what made the
MP3 audio format so popular. We need that type of pervasiveness to make any type of digital
sheet music more popular.

As with MP3 and MIDI, the flip side of pervasiveness is security, or the lack of same. We are
hopeful that XML digital signatures can contribute in this area. This is an area that will require
careful development before many music publishers are likely to embrace MusicXML or similar
technologies.

In the short term, our focus will be to extend MusicXML's reach to many different music software
applications, such as music education. Our early successes with MusicXML give us hope that
we may at last have a standardized music interchange format, which in turn will enable the
growth of the downloadable sheet music and music software markets.

Acknowledgements

Eleanor Selfridge-Field, Walter B. Hewlett, Barry Vercoe, and David Huron provided valuable
advice and encouragement, along with their outstanding prior work in music representation.
Graham Jones, Ian Carter, William Will, and Craig Sapp were especially helpful during the
MusicXML Finale Converter alpha test.

Copyright © 2001 Michael Good.

Bibliography

[Castan 2001] Castan, Gerd, Michael Good, and Perry Roland (2001). Extensible Markup
Language (XML) for Music Applications: An Introduction. In The Virtual Score: Representation,
Retrieval, Restoration, ed. Walter B. Hewlett and Eleanor Selfridge-Field (Cambridge, MA:
MIT Press), 95-102.

10

Rendered by www.RenderX.com

http://www.renderx.com

[Gilb 1988] Gilb, Tom (1988). Principles of Software Engineering Management. Reading, MA:
Addison-Wesley.

[Good 1988] Good, Michael (1988). Software Usability Engineering. Digital Technical Journal,
No. 6, 125-133. Republished at http://www.recordare.com/good/dtj.html.

[Good 2001] Good, Michael (2001). MusicXML for Notation and Analysis. In The Virtual
Score: Representation, Retrieval, Restoration, ed. Walter B. Hewlett and Eleanor Selfridge-
Field (Cambridge, MA: MIT Press), 113-124.

[Gould 1985] Gould, John D. and Clayton Lewis (1985). Designing for usability: Key principles
and what designers think. Communications of the ACM, 28 (3), 300-311.

[Grande 1997] Grande, Cindy (1997). The Notation Interchange File Format: A Windows-
Compliant Approach. In Beyond MIDI: The Handbook of Musical Codes, ed. Eleanor Selfridge-
Field (Cambridge, MA: MIT Press), 491-512.

[Hewlett 1997] Hewlett, Walter B. (1997). MuseData: Multipurpose Representation. In Beyond
MIDI: The Handbook of Musical Codes, ed. Eleanor Selfridge-Field (Cambridge, MA: MIT
Press), 402-447.

[Huron 1997] Huron, David (1997). Humdrum and Kern: Selective Feature Encoding. In Beyond
MIDI: The Handbook of Musical Codes, ed. Eleanor Selfridge-Field (Cambridge, MA: MIT
Press), 375-401.

[MIDI 1996] The Complete MIDI 1.0 Detailed Specification. Document version 96.1. Los
Angeles: The MIDI Manufacturers Association (1996).

[Sloan 1997] Sloan, Donald (1997). HyTime and Standard Music Description Language: A
Document-Description Approach. In Beyond MIDI: The Handbook of Musical Codes, ed.
Eleanor Selfridge-Field (Cambridge, MA: MIT Press), 469-490.

Glossary

MIDI Musical Instrument Digital Interface

NIFF Notation Interchange File Format

OASIS Organization for the Advancement of Structured Information
Standards

PDF Portable Document Format

RIFF Resource Interchange File Format

SGML Standard Generalized Markup Language

SMDL Standard Music Description Language

11

Rendered by www.RenderX.com

http://www.renderx.com

SQL Structured Query Language

Biography

Michael Good
CEO
Recordare LLC
Los Altos
U.S.A.

Michael Good, founder and CEO of Recordare LLC, invented the MusicXML system for
Internet-friendly music notation. He started his work in music software at the MIT Experi-
mental Music Studio, one of the forerunners of the MIT Media Lab. Before founding
Recordare, Michael worked for 20 years in the software usability engineering field at SAP,
Xtensory, and Digital Equipment Corporation. He has sung tenor with many musical groups
in the Silicon Valley and Boston areas, including the choruses for the Cabrillo Music Fest-
ival, San Jose Symphony, Boston Symphony, and Boston Pops. His trumpet playing with
the MIT Symphony Orchestra can be heard on Vox CDs.

12

Rendered by www.RenderX.com

http://www.renderx.com

	 MusicXML: An Internet-Friendly Format for Sheet Music
	1 The Need for a New Music Interchange Format
	2 MusicXML's Approach to Music Interchange
	3 Elements of MusicXML Design
	4 Freedom of Choice for Music Software Developers
	5 Future Directions
	 Bibliography
	 Glossary

